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ABSTRACT 

A previous study of the Regge-eikonal model in 4 3 is extended to 

QED. First we define a reggeon amplitude which is built up by tower 

diagrams, and then study multi-regge exchange by use of Gribov!s 

reggeon calculus 0 The situation is essentially the same as in $3: 

the eikonal approximation is the true high-energy and weak coupling 

limit (s * a, CY In s = fixed), but it breaks down outside of the weak- 

coupling limit. This confirms that the eikonal approximation as a model 

for Regge-cut is not justifiable by field theoretic arguments because of 

the neglect of inelastic intermediate states. 

Most of this work has been done at II. Institut fiir Theoretische Physik, 
Universitat Hamburg, Hamburg, Germany. 
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1. INTRODUCTION 

NAL-Pub-73/ 88 -THY 

In a previous paper’ (hereafter called I) we have examined the 

validity of the Regge-eikonal model in $3, within the framework of 

Gribov’ s r eggeon calculus 0 For this we studied the high-energy behavior 

of the diagrams of Fig. 1 since in earlier studies the eikonal form was 

derived from this class of diagrams. Our aim was to find the asymptotic 

behavior not only for small coupling constants g2 - 1/1n s (weak-coupling 

limit ), but for fixed g2, and as a result we found that the validity of the 

eikonal approximation is restricted only to the weak-coupling limit. The 

breakdown of the eikonal form outside of the weak-coupling limit is due 

to inelastic intermediate states. In rj3 there is still the additional com- 

plication that certain parts of the diagrams have to be excluded from the 

very beginning, because they screen the eikonal form. 

In the present paper of our study we extend these consideration to 

the case of QED. The eikonal amplitude has here the form: 

x(s, bl)- + s d2qp -Qlbl Wsl - qzl 1 (1.2) 

instead of (1. I) and (f-3) of I, where the external particles have been 

spinless 0 In (1. I) the external particles are electrons, and the Kronecker 

symbols denote helicity conservation of each scattering electron. The 
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reggeons in Fig. 1 are now t-channel iterated polarization tensors 

(Fig. Z), called tower diagrams. They are shown 2-4 
to have Regge 

behavior for large energies. The straight lines in Fig. 1 are electron 

lines O Our method will be the same as in I. For the reggeons we take 

Bethe-Salpeter amplitudes and use the reggeon calculus of Gribov5 to 

find the high-energy behavior of the multi-regge exchange Fig, 1. Thus 

our results are valid not only in the weak-coupling linit, as it would be the 

case, if we would use the leading term summation technique of other 

studies D 2-4 We find that the situation of eikonalization in QED is very 

similar to that in $I 3, apart from spin effects, which in QED prevent 

the complications of 43; mentioned above. In QED, the eikonal form 

(1.1) is the exact high-energy and small-coupling limit (s 3~0, cr2 l 1n s 

fixed of the considered diagrams Fig. I, but for the physically more 

interesting case (s + co, a2 fixed), the eikonal approximation is not valid. 

The reason of the breakdown are the same as that in $3: inelastic 

intermediate states D This result on the breakdown of the eikonal form 

in QED is not in agreement with Ref. 6, where it has been argued that 

in QED the eikonal form should be valid also outside the weak-coupling 

limit O 

The outline of the present paper is the following. We suppose that 

the Regge-behavior of the tower diagrams (Fig. 2) is not as well-known 

as that of $3 -ladders, and therefore, first review existing results on 

it and extend them as far as necessary for our aims. Then we have to 
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justify that we may use Gribov’s reggeon technique in QED, too, 

because it was formulated for $3 only. In Sec. III we apply the results 

of I to QED and collect the most important conclusions, which are 

almost the same as those of $30 

II. REGGE-BEHAVIOR IN QUANTUM ELECTRODYNAMICS 

Before we are going to study multi-regge exchange in QED, we 

need some properties of reggeons in this theory. It is known 2,3,4,6 

that the towers of Fig. 2 have Regge-behavior for large energies, and 

therefore, we start our considerations by extracting from this tower a 

reggeon amplitude. The bubbles “J” are explained in Fig. 3 and the 

full expression for Fig. 2 with n bubbles J is: 

Tn(s,t) = i / I:Aev 
d4ql 

(r2,rl, ql) - 
i i 

A (273 (qpl I2 - p2 (q1-rj12 - p2 

PV 
9 

nn 

IJn+IVn+l 
(qn*’ rl’ ‘y+n) (2.1) 

d4qn+l i 
I 
ee 

(2*)4 (qn+i +rj j2 - Y2 (qp+n - rl)’ - p2 ‘“n-l-i vp+1 
(y&y-& 

The photon is assumed to have a little mass Xin order to avoid infrared 

divergencies e I 
ee 

stands for the upper and lower electron vertices, and 

J 
EJ.VXO 

is the gauge-invariant photon-photon polarization tensor of Fig. 3. 
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We are not going to derive in detail the high-energy limit of (2, I), but 

ask the interested reader to study Ref. 4 (or Ref. 3, but there Sudakov- 

variables are used, whereas we prefer the infinite-momentum variables. ) 

For large energies (2.1) can be approximated to: 

x P(qn+l pee (2.2) 

with the abbreviations : 

P(ql)= 
J 

-i -i 

(2d2 
(2.3) 

J(%l3,921 )= 
d(q&$-) 

4r J -- ++ (cl *‘rVq2)q 
1- =92+ 

=o 

(Ice is, apart from helicities, the same for the upper and lower vertex. ) 

Now one would like to sum over n, but since J depends on the ql-momenta, 

it is not possible to perform this summation O Instead of this, we use the 

Mellin-transform and its Bethe-Salpeter equation. We write (2. 2) as: 

Tn(s,t) = sIeeP(qll) 1 
x p%.+ll)s I 

ee 
(2-4) 
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where the quantity in the square bracket represents the photon-photon 

scattering amplitude, the photons being off-shell. The sum over $9 

satisfies the integral equation: 

(2.6) 

and the right-most singularity of its solution determines the high-energy 

behavior of T = Z Tn: 

. 

T(s, t) = & IeeP(ql L) L 
(j-f-1 j2 

P(qzl) I eeo (2.7) 

We still rewrite (2.7) and introduce an operator notation: 

T(s,t) = & 
J 

dj sj+2 i(rlqll) ‘j(‘l1 rl ‘21) 

(j+l J2 
%-l921 1 o (2.8) 

The operator f’andy act only on the upper and lower masses of 4 
j 

and are called vertex operators. 

The solution of (2.6) is known 2, 3 only for the special case of the 

. forward direction (r I I = 0) with the additional constraint that electron 

and photon mass vanish. In this case, the solution has a cut in the j- 

II 2 2 plane from -1 to -1 + 32 r a, . It has been argued3 that this cut should 

be independent of the vanishing of the electron mass, but for m2 k 0 

there might be, apart from the cut, also an infinite sequence of poles, 

accumulating at -1. We are not going to study this in further detail, but 

assume that all singularities in j are eigen-values of the kernel of (2.6) 

and approach -1 when a, + 0. Both properties can be illustrated, when 
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we consider (2.6) near a j-pole (for a cut we take the discontinuity): 

+.(q r q 7% 
1 

-J 111 4r (j+l) / 
J (ql rig* I ) P(ql I )Gj(qi lr 1 q[)(20 9 ) 

J contains the electron charge e4, and when e+O, the singular value j 

4 
must go to zero proportional e , too. A further property of the solutions 

of (2.6 ) , which is important for us, is the lack of factorization into two 

vertex parts (cf. (2.1) of I). This has the effect that the amplitude 

(2.7) has not the simple form of two Gribov vertices, as it would have 

for the reggeons being $3-ladders. 

So far our results are only valid in the weak-coupling limit, since 

our integral equation is obtained by summing over leading terms. In 

order to generalize the reggeon amplitude (2.7), we consider the photon- 

photon scattering tensor G pvxo ’ which satisfies the integral equation 

of Fig. 4. with kernel and inhomogeneous part J 
f.lVX Do 

At first we 

review some results on the polarization tensor J (Fig. 5), as discussed 

in Refs. 7 and 8. Because of its symmetry against the simultaneous 

permutation of external momenta and Lorentz indices, the tensor is 

gauge invariant D From general arguments9 or explicit calculations 7, 8 

it follows that the internal integrations, being logarithmically divergent 

for each term separately, converges for the sum of the three terms. 

By separating from each of them its divergent part in such a way that 

the sum of all them vanishes, the tensor can be cast into the spectral 

form: 
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a I 
t; 

St 

J = dz dz dz dz4 p,VXO 
pvX0 s t 1"'" 5-szs-tzt - Zzi M; 

+ (s,u)+ 6, u) 
-ie 

(2.iO) 

The numerators are entire functions of the external masses and the other 

invariant s D As a function of the external masses, the tensor has only 

right -hand singularities. This is also true for the tower diagrams of 
, 

Fig. 2, and they can be cast into the spectral form (2.10) as well. In 

the Bethe-Salpecter equation for the tower diagrams, at least those 

solutions have this spectral form, which can be represented by a 

Neuman expansion, and we shall assume that this holds also for our 

Regge-behaved solution.. 

To establish a reggeon calculus of G 
pVX0 

we need some properties 

of.its higkenergy behavior. To this end we approximate its Bethe-Salpeter 

equation in the same way as we did for the $3-ladders in the appendix 

of I, i.e., we assume that for large energies the essential part of 

momentum integration between J and G in Fig. 4 is given, when the external 

masses of G are finite, whereas its energy is large. Then we can use the 

approximation rules, which are formulated in the beginning of Sec. II 

of I, and arrive at an approximated integral equation. For the solution 

we make a Regge-ansatz: 

G ~vxo (s,t) = i . - 
2Tl s 

dj sj (t 1 
pv x0 

(2,ll) 
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and obtain two different equations for 4. -t and +r. For small values 
J 3 

of CY, one can see from the integral equation that $i has the right -most 

singularities, and the integral equation is found to agree with (2.6). All 

this is derived in the appendix. For our aim we need only the form 

(2.11) and shall assume that the “+” solution dominates the “-” one. 

We then neglect the I’+” index, write g(j) for the signature factor and 

disregard the Lorentz indices, since - as shown in the next section - for 

the high-energy behavior of multi-regge exchange only the ‘!- - ++I’ part 

is relevant 0 Finally, for $j we use the spectral form: 

4Jjw = & ,io i’ dp j dzl.eo dz4L (2.12) 

0 -1 0 t;-f3t - 2z.M2 -ic 1 i 

III. MULTI-REGGE EXCHANGE IN QUANTUM ELECTRODYNAMICS 

With the result of the last section we are ready to study multi-regge 

exchange in QED. As an illustration we consider the amplitude of Fig. 5. 

For the propagators along the electron lines and the photons we use the 

same approximation rules as for 4 3 
in I, although their justification is 

less obvious here. For in o3 the reggeon amplitude goes to zero, when 

its external masses become large, and therefore the main contributions 

of momentum integration at the two ends of the reggeons are due to those 

parts, where the reggeon masses are finite. In QED the tower amplitude 

does not have such a fall-off property. However, the integration between 
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reggeon and external particles still converges, as a consequence of 

gauge invariance, and our approximations do not disturb this convergence. 

Thus it is the same situation as in c$~. -As a direct evidence for the validity of 

our approximation rules, one can reproduce the weak-coupling results, 

which have been found by leading-term summation. In the appendix 

we have done this for the simplest case of one-reggeon exchange of 

Fig. 2 and formula (2.7). 

Thus we can proceed almost in the same way as in $3. There 

3 are only two modification of our $ -treatment. The one concerns the 

factorization of the reggeon amplitude. In contrast to the 4’ - reggeon 

[ (2. 2) - (2.4) of I] , the tower amplitude (2.11) does not factorize into 

two vertex factors. The second difference from $3 is due to electron 

spin. For illustration, we take the numerator along the upper electron 

line of Fig. 5. 

up2+ri h a [(r2+ri-p1-qh +ml yB [ k2-pl-p2-q)y + ml y 
P 

3 
(3.1) 

x [ (r2-PI )y +ml yvuX(r2-r1) 
1 

The hare the helicities, and all other notation is the same as in I. After 

the introduction of infinite momentum components for momenta and y- 

matrices(the latter are discussed in some detail in Ref, II), we find 

that, up to. powers of o, the leading term of (3.1) comes from 

a = p = p = v = + (this is the reason why we need only the - - + + component 

of the reggeon). The leading term has the form: 
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1(2w )3(1-x,)(i-x 
27 

i-x2)(i-xi) ux tr +r )Y Y-Y,Y-Y+Y-y,ux (r -r ) 3 3 1 -I- 1.2 1 

-f terms (CO’) 

-z ; (1 
1 s 

- x1)2(1 - Xi -x2)6Ax 
13 

Thus the effect of spin is a simple factor, and this holds for all diagrams 

(3.2) 

of Fig, 1. After this we write down the two-reggeon amplitude of Fig, 5: 

T(s,t) - i.: 
s 

d2q216(2)(Zqi ,-- 2: 
II) 

(3.3) 

1 
P(s,ql) = Fi 

s 
dj sj C(j 1 4Jj(-qt) (3*4) 

The y2 (7,) are now integral operators, acting onthe upper (lower) masses 

of the reggeons, and the s2 factor comes from the spin numerator (3. 2). 

If the +j in (3.3) would factorize into two vertex factors, one depending 

only on the two upper, the other on the lower masses, we could combine 

them with T2 and I,, resp. , and would end up with (2.1) of I. Apart 

from these two .modifications, the I-operator have the same form as the 

corresponding Gribov vertices in I, 

Because of this similarity it now causes ne trouble to transfer our 

d3 results to the present case of QED. Firstly,only the nested 

structures of Fig, 1 are relevant for large energies, and secondly, the 

eikonal form does not hold. In the weak-coupling limit, s+a~, Q In s 

fixed, the vertex operator decouple, just as the Gribov vertices in I, and 
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decay into a product. For the two-reggeon exchange: 

with [cf. (2.8)1 : 
(3.5) 

-+ c 
1 

sr2P(s,qi)s~2 = - 2ri / 

dj sj*2 ~j(qll’ql’q21) C  

1 (q1’q21) 

(3.6) 

and the amplitude for two-reggeon exchange: 

d2ql [s?2P(s,rl+qJ’sf21 Is?2P(s,r,-q,)s?2] 

(3.7) 

which is just the two-reggeon term of the expansion of (1.1). 

We still mention that in the weak-coupling limit the (I-x) factor of 

(3. 2) becomes important. In I it has been shown that in the weak-coupling 

limit there arise some divergences in the x-integration, and each divergent 

x-point denotes a definite path of large momentum across the diagram. 

Apart from the eikonal path, which is associated to xi=0 in the vertex 

parts, there are other non-eikonal paths, which in $3 gave stronger 

contributions than the eikonal one. In QED, the (1-x ) factors give an 

additional zero of the numerator at x=l and thus prevent these end points 

of x-integration to yield a divergence when cu+O. Thus only the eikonal 

path across the diagram survives, and the eikonal form is the correct 

high-energy weak-coupling limit. That this is not true for $I~, is the 

complication we mentioned in the introduction. 
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The breakdown of the eikonal approximation outside of the weak 

3 coupling limit has to be interpreted in the sameway as for 4 , and this 

interpretation is not affected by the lack of factorization of the reggeons 

in QED. Thus our QED-model confirms the non-validity of the eikonal 

approximation. It has also shown that the arguments of eikonalization 

does not strongly depend on the nature of the j-plane singularities of the 

exchanged reggeons and renormalization of the reggeons should not alter 

the situation. 
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APPENDIX 
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In this appendix we derive an approximated integral equation for 

the reggeon amplitude G 
/NhC' 

We also reproduce the weak-coupling 

limit of the integral equation (2.6) as well as the weak-coupling limit 

of the scattering amplitude (2.7)(Fig. 2). 

The integral equation is graphically represented in Fig. 4, the 

kernel in more detail in Fig. 3. 

We shall consider only the amplitude G- _ ++! since according to 

what we have said in Sec. III only this part yields the dominant con- 

tribution to reggeon exchange. Furthermore, when we introduce the 

infinite-momentum variables as described in Sec. II of paper I, we find 

that the leading term of the kernel has a “+” for the lower photon indices 

in Fig. 3a-c. Each part of Fig. 3 contributes in the following form to the 

kernel of our integral equation : 

-1 4 
dw 

(2d4 

d4p -- 
(2d4 

numerator 

Di D2 D3 D4 

1 

M;’ - /.L’ 

w+ = 2WXi’ p, = 20X2’ 2ww = -yl, 2wp = y2 

reggeon energy = (q+r312 x2S 
(A. 2) 

where in G _ _ ++ we have denoted only the dependence on its external 

masses O For Fig. 3a, the numerator is: 
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Numerator = tr y- C (w-rl)y+ml y, [(w-p)y+m Iv- [(w-p-r2-rl )y+ml 

= 32 

-I- 

y, hm-,)v+ml 
(A.3) 

[(w-r1 II (w-r2)l +m21 C (w-pIp-P-r2-ri)l +m21 

C(w-r,) I(w-P)i -Em21 [.(w-r2)i(w-p-r2-r1) I +m21 

[ (W-rl)I(w-rl-p-r ) +m21 I (w-r2) I(w-P)I +m21 
21 

and the denominators : 

D1 = (w-ri)2-m -xl(yI - 
M2 2-M: 2 2 

2 )-b-r,), -m 

D2 = (w-P)~ -m2w (x3-x2)(y1 -y,Hw-p)2, -m2 

D3 = (w-p-r1 -r2J2-m2m (x~-X2-1)(Y1-y2-r121M22)- (w-P-rs)t -m2 

~~ = (w-r2)2 -m2m (xl-l WI-r: 
M;+M; 2 2 

2 )-w -m 
1 

M;-Mf (A.4) 
2 

Mi 
f2 = (p-ri)2- x2(y2- 

M;- M; 

Hp-rl )i 

M2 
‘2 = (p+ri )2m x2(y2 + 2 

(M1 and M2 are the external masses at the upper end of our equation 

Fig. 4, for other notation see, I, Sec. 11). The y-integration are non- 

zero only when x is restricted to: 

o<xl-x2a, ocxl<l, -iCx2<+l (A. 5) 

> 
The parts x2 < 0 must be treated separately, For x2 % 0 we obtain, 

after the y-integration: 
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+a 
Ai fl) 

+a 
Ai = txI -x2~ [ (w-P-r~)~+m2] +(i-Xl+X2)[ (w-P)~+m21 -(x4-x2)(1-x1+x2) 

2 
x(M2+rll 2, (A. 6) 

2 2 zx (r -EM - 
(w-p)t+m2 wt +m2 

2 
211 1 xI-x2 l-Xi ) - (P-q1 

M+l = x2(rfl + M; - 
(w-p): + m2 wt +m2 

xI -x2 l-X* I- (p+r& 

For x2 < 0:: 

A-; = x&w1 2 +m2)+(t-x1) [(w-r,): +m21 -x~(~-x~MVI~+~~~ 2 ) 

A2 
-a = (xi +x2) [(w-+p-ri ): +m2] +(I-X1+X2)1 (w+P)t+m2 I - (xl+x2)(+-xl+x2) 

2 2 x tM2+rll) 

-2 

M ‘I 
= -x (r 

2 
+M 

2 (w+p);+c12 
- 211 2 x +x 1 2 

(A.7) 

2 2 
wl +m 

I-X, ) - (P-rJ 
I 

-2 
M12 

= -x (r 2 +M;- 
(W+p)t +m2 wt +m2 

2 
2 I1 X4 +x7 l--Xi 1 - (P+r& 

Similarly, we find for Fig. 3b the condition 

0 -c Xi< 1, o< x 1 -x2< 1, o<x2< 1 (Ae8) 
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and obtain after the y-integration: 

numerator = -32(wt+m2) ( w-rj)L(w+rl)l+m2 

+b 
Al 

= xl(wtfm2)+(1-x4) (w-ri)2, +m2 -xl(l-xlW~+-z-l12) (A.9) 

+b 
a2 

= xl(wt +m2)+ (j-x,) (w+rl)t + m2 -xl(l-xl)(Mi+r 2, 11 

The M 2 are the same as in (A. 6). For Fig. 3c: 

0 4x1 4 1, 0 4x1+x 4 1, -1 4x2 40 
2 

-C 
Al- 

- ~~(~21 +m2)+(1.-xI)[(w-rl)21+m21 -xl(l-xI)(M:+rlT ) 

-C (A. 10) 
A 2 =x (w2 

1 1 
+m2)+(i-x1) [(w+rl): +m2 I -xppvI~+r 2, 11 

The numerator is the same as for Fig. 3b, the M I2 as in (A. 7 ). 

Now we combine all these contributions and call the part due to 

x2 > 0 K+(x2pI ), due to x 2 4 0 K-(x2, pI ). Returning to (A. I) and sub- 

stituting for G--++ the ansatz (2.13), we obtain from the energy factor of 
. . 

the reggeon still a factor (x,r’. The complete kernel for (If e-inJ ) 93 is : 

(x2 y’ K+(x 2> P*) + C-x,9 K-(x2,pl ) (A. 11) 

In the second part we make the substitution x2 *-x2, where we have 

to be careful .with (-49 and the signature factor. We end up with two 

different integral equations for the “+” and “-” amplitudes, and the 

kernels of them are: 

(x21j[K+(x 2> pI) * K-(-x2, p,] (A. 12) 
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Next we take the weak-coupling limit. We know from our consid- 

erations of See, II that the right-most singularities in j must approach 

-1. Then the x2 -integration diverges at the point zero, and the coefficient 

can be found by partial integration of x 
2” It turns out that the coefficient 

of the “-” signature amplitude vanishes, and the leading behavior must 

be contained in the “-E” amplitude, For its kernel we obtain, in the weak- 

coupling limit, exactly the kernel of (2.8 ), and what we have called 

+ j in (2.8 ), is just the weak-coupling limit of (I+e +j NJ j+- 

Finally we reproduce (2.9). The amplitude of Fig. 5 is: 
A 

T(s,t) = $ s dj #j 1 
d=qi 

LIee (r2,r1,q1)- i i 

25 ++ (2n)4 (q1+r1)2-p2 t91-r1)2- P2 

x 1 (qd+q2)21 jlp-++ (cly ri’q2) 

d4q2 i i 
X- 

(a4 (q2+rtJ2- p2 (q2-r1)2- p2 
(A. 13) 

where the reggeon has the energy: 

[ tq3 +q2J21j- - tsx*x2 JJ (A. 14) 

The integrations of q1 and q2 are treated in the known way, and the 

y-integration yields the restriction of the x-integration to the interval 

(-I, +I). In the weak-coupling limit, we have to integrate by parts over 

x at both ends of the reggeon and thus obtain a factor I/ (j-t 1)2. The 

result is (2-7). 
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FIGURE CAPTIONS 

Fig. 1 S-channel iteration of reggeon exchange: the reggeon 

legs are crossed in all possible ways. 

Fig. 2 The tower diagram. 

Fig. 3 The photon-photon polarization tensor J. 

Fig. 4 Bethe-Salpeter equation for the photon-photon 

scattering tensor G. 

Fig. 5 One diagram that contributes to the two-reggeon 

exchange D 
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